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1 .  Introduction, 

Two ac t ive  areas o f  research i n  spectral methods a r e  the  de f i n i t i on  o f  well-posed 

approximat ions to the Navier-Stokes equations i n  which r igorous  e r r o r  bounds can be obtained, 

and the construct ion of spectral- type techniques which a r e  appl icable to  problems i n  general 

domains. As regards the f o r m e r ,  recent progress has established "staggered-mesh'' formulat ions 

resu l t i ng  i n  well-posed, solvable schemes that are optimal i n  the veloci ty [ 27 ] ,  [ 4 ] ,  [ 5 ] ,  [ 2 2 ] ,  

[2 ] .  As regard spectral techniques fo r  s imulat ion of f lows i n  complex domains, several a lgor i thms 

have been proposed, including mult idomain collocation patching schemes [ 1 1 3 ,  [ 231, [ 201, [ 2 1 3 ,  
[ 151 and spectral element variat ional techniques [ 251, [ 131, [ 261, 

The f i r s t  schemes wh ich  involved staggered meshes, resulted i n  well-posed problems ( i .e . ,  

w i thout  any spur ious  mode i n  the pressure) f o r  one-dimensional problems [27] ,  [ 4 ] ,  however 

the extension of the ideas t o  higher space dimensions [ 2 2 ]  introduced spur ious  modes in to  the 

system [2 ] .  Although a workable scheme can be achieved by  f i l t e r i n g  the pressure [ 2 2 ] ,  i t  i s  

c lear ly  desirable, i n  p a r t i c u l a r  in  th ree  space dimensions, to  construct  a method i n  wh ich  the 

problem i s  i n t r i n s i c a l l y  well-posed. To this end, a collocation technique i s  proposed i n  [ 2 ]  , i n  

wh ich  the  veloci ty and pressure  spaces a r e  chosen so as to  give a unique solut ion. For t h i s  last 

scheme; an e r r o r  anaiysis has been performed, ana specirai accuracy i s  proved. 

The spec t ra l  element spat ia l  discret izat ion invo lves  a var ia t iona l  p ro jec t i on  operator 

appl ied to  elemental tensor product Lagrangian interpolants through local Chebyshev [ 25 ] ,  [ 131 

o r  Gauss-Lobatto Legendre collocation points [ 261. The technique i s  capable o f  handling general 

geometries w i t h  r e l a t i v e  ease, due to the "automatic" patching i nhe ren t  i n  the var ia t iona l  

formulat ion.  I n  this paper,  we consider a synthesis o f  the staggered-mesh and spectral element 

concepts that represents an enhancement of both ideas, The spectral element discret izat ion benefits 

by  a s igni f icant improvement i n  the treatment of the pressure as compared to  past methods, i n  

wh ich  e i ther  spur ious  pressure  modes a re  present [ 2 5 ] ,  o r  i n  wh ich  the pressure  i s  treated 

inaccurately [ 131, The staggered mesh schemes a r e  improved i n  that the e r r o r  estimates obtained 
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fo r  the variational spectral element discret izat ion a r e  better than those obtained prev ious ly  f o r  

col 1 ocat i on. 

I n  Section 2 ,  we present  o u r  numer ica l  method as appl ied t o  a Legendre spect ra l  

element-Fourier d iscret izat ion of the steady Stokes problem. A l l  r esu l t s  presented here extend 

d i rec t l y  to higher space dimension, as we l l  as to  the unsteady case, as w i l l  be discussed i n  fu tu re  

papers (see e.g. [ 191). I n  Section 3 a theoretical analysis i s  performed, i n  wh ich  i t  i s  shown that 

no spur ious modes appear i n  the pressure.  Fur thermore,  opt imal e r r o r  estimates are  obtained fo r  

both the velocity and pressure.  Last ly,  i n  Section 4 ,  we present some numerical  resul ts .  These are 

i n  accordance with the theoret ical  estimates. We prov ide also some detai ls on the numer ica l  

implementat ion o f  the  method tha t  uses a new a l g o r i t h m  f o r  s o l v i n g  spec t ra l  Stokes 

discretizations, the details of which w i l l  be presented i n  a f u t u r e  paper[ 181. 

I n  what follows, f o r  any integer m and any domain A i n  [R o r  R 2 ,  we denote by C"(A) the 

space of a l l  functions that a re  continuous over A as we l l  as a l l  t he i r  der ivat ives up to the order m ,  

and by Cr(A)  the space of a l l  functions that are i n f i n i t e l y  d i f ferent iab le w i t h  compact support  i n  

A .  

I n  order to precise the sense i n  which the equations we shal l  consider have to  be understood, 

we introduce some functional spaces. We denote b y  L2(A)  the standard Lebesgue space provided 

w i t h  the norm 11 . / I A  and the scalar product ( . , . ) A  ( o r  11 . 11 and (.,.) when no confusion can occur). 

and fo r  any positive rea l  number r, the usual Sobolev space Hr(A) provided w i t h  the norm 1 1  . Ilr,a 
and semi-norm I . l r , A  (o r  11 . 11, and I . 1, when no confusion can occur) .  

F ina l l y ,  C w i l l  stand fo r  var ious constants that may v a r y  f r o m  one l i n e  to the other ,  and fo r  

any funct ion f depending on one var iab le x ,  we denote b y  f, the der ivat ive o f f  w i t h  respect to x .  

Acknowledgments : The authors want to  thank C. Bernard i  f o r  he lpfu l  comments concerning th is  

work.  
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(2.1 ) 

2. The Numerical Method. 

-uAu  + V p  = f  

div  u = 0 i n  Q , 

i n  0 , 

As i s  wel l -known, the appropr iate space fo r  the pressure i s  L:(Q) defined as fo l lows 

L:(Q) = { I+I E L2(Q) , I,I+I(x) dx = 0 } , 

We denote by  Cr ( Q )  (resp. C r , # ( Q )  ) the spaceof a l l  functions that are i n f i n i t e l y  di f ferent iable 

and are  2n-per iod ic  i n  the second d i rect inn as we!! FIS their der ivat ives (res;. that a r e  in f in i te ly  

d i f ferent iab le w i t h  compact suppor t  i n  the f i rst  direct ion and 2n-per iod ic  i n  the second one as 

w e l l  as t h e i r  der ivat ives).  I n  order  to take the boundary conditions (2.2)(2.3) in to  account we 

define the spaces H:,,(Q) as the c losure of  Cr,, (fl) i n to  H1(Q), and H i ( A )  as the closure o f  

CF(A) i n t o  H1(A) .  Let us define also, for  any posit ive rea l  number r ,  the space H[;(0) as the 

closure of Cz (n) in to  “(0) . 
I n  t h i s  f r a m e w o r k ,  i t  has been proved i n  [ 4 ]  that the problem (2 .1  ) (2 .2) (2.3)  i s  wel l  

posed f o r  any force i n  the dual space [H;’(Q)]* of [H:,,(Q)l2, the norm of wh ich  i s  denoted b y  

1 1  I ]I-, More  precisely we have 

L h e o r e m  7.1 : f o r  any f = (f,g) in  [H;’(Q)I2 , problem (2.1 ) (2 ,2 ) (2 .3 )  has a unique 

solution (u,p) in [ H:, #(  Q)]*xL:( Q )  , and one has 



- 4  - 

(2 .6)  U(X ,Y) = C m  O0 =-= brn(x) e x p ( i  my)  , 

. P ( X ~ Y )  = C m = - m  O0 ^Pm(x> e x p ( i m y )  . 

The fol lowing proposi t ion i s  now straightforward. 

ProDos i t ion  2 , l :  For any f = (f,g) i n  [ H ; ' ( f l ) I 2 , t h e  pa i r  (u,p) i n  [ H i , , ( f l ) ] 2 x L i ( f l )  is 

the solut ion of  problem ( 2 , l  ) (  2 .2 ) (2 ,3 )  i f  and only i f  i ts  Fourier modes are  solut ions in  

[ H ; ( ~ l ) ] ~ x L ~ ( r \ )  for n f 0 ( resp .  [ H : ( A ) ] 2 ~ L i ( A ) f o r  n = 0 ) o f p r o b l e m s  (2 .7 ) (2 .8 )  

(2 .9) .  

Our numerical technique w i l l  be based on var ia t ional  f o r m s  equivalent to (2.1 ) (2 .2)(2.3)  

and to (2.7)(2.8)(2.9). We f i rst  introduce the notations 

X = [ H i , # ( f l ) 1 2  , M = L:(n) , 
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and provide X w i t h  the standard semi-norm I . I, o f  [H ' (n ) I2  equivalent to 1 1  I 11, over X .  

The var iat ional  formulat ions are given by: Find (u,p) in XxM such that 

(2.10) v(Vu,Vw) - (p,divw) = (f,w> , V w E X , 

(2.1 1 )  (q,divu) = 0 , V q E  M , 

and ( dropping the subscr ip t  n ) :F ind  (u,p>, u = (u,v) in [H:(A)l2xL2(n) such that 

(2.12) v[(u, ,w,) + n2 (u,w>] - (p,w, + i n z )  = (f,w) , V w = (w,z> E [H;(A)]* , 

(2.13) (q,u, + i n v )  = 0 , V q E  L2(A>  , 

R e m a r k  7.1: Note that ,  for the case n = 0,  problem (2 .12 ) (2 .13 )  i s  w e l l  posed only  i n  

[ H i ( A ) ] 2 ~ L i ( A ) ;  i n  what fol lows we shal l  not consider that case for s imp l ic i t y  of formulat ion.  

2 .2  The d i s c r e t e  f o r m u l a t i o n ,  

Let K be a f ixed number independent of the for thcoming parameters of d iscret izat ion We 

divide A i n t o  K subinterva ls  A ,  , , , . ,A ,  , and set nk = A, x 0.  The spaces of approximat ion w i l l  

consist of funct ions that  a re  piecewise-polynomial over A, and t r igonomet r ic  i n  the second 

direct ion.  These discrete functions w i l l  be determined i n  order to  v e r i f y  problem (2.10)(2.1 1 ) i n  

a discrete sense. More  prec ise ly ,  we shal l  replace the integral  anpearing i n  ?he L2(,A)-scalar 

product by  quadrature formulas associated w i t h  the Gauss and Gauss-Lobatto points. 

Let us introduce now the parameter of discretization h = (N,M),  a p a i r  o f  IN2 w i t h  N 2 2. We 

denote by  P,,, the set of a l l  functions that a r e  polynomial of degree less than o r  equal to  N on each 

subinterva l  A, , k = 1 ,.,, ,K ( i n  the case K 1 we s imp ly  w r i t e  P, > .  
Next, we denote by  SM , the set of a l l  t r igonometr ic polynomials of degree less than o r  equal t o  M , 

1 .e. 
M 

t s, = { rp (Y)  = Lm;+ cp e x p ( i  my)  } ) . 
I 
I 

Let  us  def ine now the quadrature formulas on A and 0. We denote by  ( C i  , ai> f o r  

i = 1 ]... , N- 1 , the nodes and weights of the Gauss fo rmula  and by (t i , ei) f o r  i = 0, ... , N the nodes 
I 
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R e m a r k  7.3 : We state here an equivalent pointwise in te rpre ta t ion  of  these problems. Let us 

f i r s t  work  w i t h  the case K = 1 .  We consider f i r s t  a discrete problem close to  (2.23) : Find uN in 

PN(A) n H A W  such that 
2 ( 2 . 2 5 )  

We note that the products uNxw, and uNxxw belong to P2N-2 whence, f rom (2.  15)GL  and (2.  1 7 ) G L ,  

(uNX ,w,)N,GL+ n (uN,w)N,GL= (f,W)N,CL , v w E pN n H:(A) I 

we can w r i t e  

(2.26) (uNX ,w,)N,GL = (uNX ,w,> = -(uNXx ,W ) -(uNXx ,w)N,GL 

Let us now introduce the Lagrange in terpolant  Qi o f  the point  ti , i 0, ... ,N,  i.e. the polynomial  of 

P, that ve r i f i es  

(2,271 V i' = 0 ,..,, N , ai(<,) = Si, , 

where cii, denotes the Kronecker symbol. Taking w = Qi , i 1 ,..., N- 1 , i n  ( 2 , 2 5 )  yields, thanks t o  

( 2 . 2 6 ) ,  

( 2 . 2 8 )  V i 1 ,..., N-1 , -uNxx(Ei) + n u,(ti) = f(ti) . 
Problem (2.25) appears as a collocation approximation of the solution of the Poisson equation, 

2 

Unfor tunate ly ,  the same i s  not t r u e  fo r  the Stokes problem ( 2 , 2 3 ) ( 2 . 2 4 ) .  Indeed the 

d iscrete scalar product  ( , , , )N,G involves the points Ci , Hence, we should introduce, as test 

funct ion z ,  the Lagrange in terpolant  corresponding to  that set of points. Such an in terpolant  i n  the 

expression [ (uNX , w , ) ~ , ~ ~ +  n ( u ~ , w ) ~ , ~ ~ ]  would not decouple the Gauss-Lobatto points. The only 

equations we can obtain, i n  the case K = 1 , a r e  the fo l lowing ( take w = ( Qi , Qj ) ,  1 6 i ,j  < N- 1 , 

I 

2 

and note that pN Qix belongs t o  P2N-3 SO that (pN , Qix)N,G = (pN , ai,> = -(pNX , ai> = -(pNx , Oi:N,GL 1 
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R e m a r k  7.3 : Let us now consider the case K > 1 ,  Here, the in terpretat ion of (2.25) involves the 

v a r i o u s  v i r t u a l  boundaries ak+l = A, n / \ k + l  , k = 1 , , , . ,K- l ,  Indeed tak ing  the Lagrange 

interpolants of the points t i ,k d i f ferent of - 1 and 1 gives 
2 (2.29) V k = 1 ,..., K , V i = 1 ,nn-,N-I 

(2.30) 

-U~~, (c i ,k )  + n uN(Ei,k) = f ( t i , k )  

, [-UNxx(ak) + n uN(ak> - f(ak)](eN,k-1 + e0.k) = UNx(a[) - uNx(a;) I 
2 v k = 1 jnan,K-1 

[here g(x') (resp. g(x-)) stands f o r  l i m  g(t) ( resp. l i m  g(t) >.]  t+x t+x 
t > x  t < x  

Let us note that  (2 .29)  i s  a col location method f o r  so lv ing the Poisson equation, w h i l e  

(2.30) is ,  i n  a weak sense, the t ranslat ion of uNx(a,> = uNx(a;) since eN,k and are  ( s ( N - ~ > .  

This condition on the der ivat ives means the cont inu i ty  of uNx , which i s  the usual condition added to 

a mult idomain technique. 

For  the problem ( 2 . 2  1 ) (2 .22 ) ,  we could d e r i v e  a co l locat ion- l ike i n t e r p r e t a t i o n  of 

problem ( 2 . 1 2 ) ( 2 . 1 3 )  but  t h i s  one i s  here not meaningful1 on the boundary. 
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3. E r r o r  Ana 1 usis, 

The main resu l t  of t h i s  section w i l l  consist i n  an asymptotic expression fo r  the e r r o r  bound 

between the exact solut ion of  (2.10)(2.1 1 )  and the approximate solut ion of  (2 .2  1 ) ( 2 . 2 2 ) .  The 

resu l t  i s  opt imal under the ( m i l d  assumption that there  ex is ts  a constant C* independent o f  h 

such that 

(3.1) M < C *  N ,  

This i s  not a l im i ta t i on  fo r  the pract ical  cases of numerical in terest ,  but ,  f o r  the theoretical point 

of v iew,  we g ive i n  a f ina l  r e m a r k  the behaviour of  the e r r o r  bound we can prove i n  the general 

case. We don't consider the dependence of  the e r ro r  bound w i t h  respect to  a possible growth of K 
i nvo lv ing  a decay of the measure of the A, 's; this i s  now under consideration . The analysis i s  

more  technical since such a scheme would require a dependence of N and M w i t h  respect to  the 

measure of the A, ' s  and the var ious  ra t ios  of K ,  N and M would be involved i n  the estimate. 

Nethertheless i f  K i s  f ixed o r  bounded, the case of dependence of N and M w i t h  respect to  k can be 

handled by the same proofs as those explained i n  t h i s  section b y  using the general resu l t s  o f  the 

appendix B. 

The analysis we a r e  going to  per fo rm w i l l  use extensively some o f  the main proper t ies of  

the Legendre basis of polynomials. Let us recal l  them before s ta r t ing  the proofs. We denote by L, 
the Legendre polynomial  of degree n and recal l  that  L, has the same pa r i t y  as n and that 

(3.2) L,(-l) = (-l), , L,(l) 1 . 
next we give the formulas that can be found i n  [8 ;  Chapt.2,§7] 

(3 .3 )  

(3.4) 

(3.5) 

(3.6) 

(L, , LnJ = ( 2 / ( 2 n +  1 ) )  6,,, , 

(( 1 -x2)L,) + n(n+ 1 )L, = o , 

( n +  1 )  L,+,(x) = ( 2 n +  1 )  x L,(x) - nL,_,(x) , 

I:, L,(t) d t  = [L,+,(x) - L,- l (x) ] / (2n+l)  

I ,  

I 

As pointed out i n  [ 5 ]  the existence and uniqueness of the solut ion of problem ( 2 . 2  1 )(2.22) 

b 
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(3.12) 

re lay on a compat ib i l i ty  condition between the discrete spaces MN and X, . We f i r s t  con f i rm th i s  

out i n  subsection 3.1 , 

V i 1 ,..,, N- 1 , div b (ti , .> q ( t ,  , ,)  , 

. II b 11, 6 c II 9 II ' 

3 .1 Some p r o p e r t i e s  o f  t h e  d i s c r e t e  d iveraence o p e r a t o r .  

The main resul t  of th is  subsection consists i n  the fol lowing 

,hm&Ll- : For any q in M h  there exists a function w in X, such that 

(3.7) 

(3.8) 

V k = 1 ,.,., K , V i 1 ,,,., N-1 , d ivw( t i ,k  , .) = q(ci,k , .) , 

II WII, < c II 911 ' 

Let us search now a function Y i n  (P, o SM) o R y  such that 

(3.13) Y,(+ 1 , .I - 4,(i 1 ,.) , Y,(+ 1 ,.) = 0 I 

T o  t h i s  purpose, l e t  us w r i t e  the funct ions 4 and Y i n  t e r m s  of F o u r i e r  ser ies i n  the second 
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(3.16) r;(l)= 1 , r ; ( - l ) = O  , rc(+l)=O 

rJ1) = 0 ,  rJ-1) 1 , r,l(+I) = 0 , 

e have 

(3.18) 

f y i  ng 

V m g ~  , i m Q " = @ ; ( - l j r ;  + @ F ( ~ ) r i  , 

C k o = O  , 

x = - q l )  * 

and such that there exists a constant C independent of m and N 

(3.17) 

I n  order to f i nd  such elements, we define, f o r  any IJ in N, the polynomials sv and gV by  

(m-311r;"112 + m - ' ~ ~ r ; ' l ~ ~ +  ml l r ;  1 1 2 )  t( m - 3 ~ ~ r ~ ~ ~ ~ ~ 2  +m- ' l l r i ' l 12+ml l r ;112)  G C .  

SJX) = x2V-(1/2) x4v , 

S&x) = [(4IJ+ 1 )  x2U+'-(2y+ 1 )  x4"+ ' I / (4y)  . 
I 

are elements of P, and solutions of Then i t  i s  an easy matter to check that rm= s ~ ( ~ / ~ ~ * )  i s ~ ( ~ / ~ ~ * )  

the problem ( 3 . 1 6 ) ( 3 . 1 7 ) ( r e m i n d  that the constant C* was introduced i n  (3 .1)  to  impose a 

re la t ion between M and N). 

f 
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+ ~ ~ = - M , m ~ O  ( mv311 rk" 112 + m- l l l  r k '  1 1 2 +  m 11 r;1l2) m I+:( 1 ) 1 2  

m I @:(-I ) 1 2  
From (3.1 7 )  , we der ive as a consequence of [ 141 

M M 
m I @:(-I ) 1 2  + L,= -M 2 I 9 12,n c (E,= -M 

G C (  IPx( -1  ,.)Il1,2,9+ 119,(1 ,*)ll1,2,9) 

G c II 9, 111 ,* 

I9 I2,n < c II 9 I*,* ' 

II 9, Ill,* G c I/ Q, 112,* ' 

2 2 

2 

so that 

(3.19) 

Using Y, (k  1 ,0) 0 and the Poincare-Friedrichs inequal i ty,  we deduce that 

( 3 . 2 0 )  

Besides, we note that Y - Xy i s  a periodic function w i t h  zero average since Qo i s  equal to 0. Hence, 

i t  i s  standard t o  note that 

II 9 - XY Ilo,* G c I I  Yy - Ilo,* G c II Yyy Ilo,* 6 c I y 12.0 , 

and f rom ( 3 . 1 5 ) ( 3 . 1 9 ) ( 3 . 2 0 )  we f ina l l y  der ive that 

( 3 . 2  1 )  11 Y 1 1 2  < C 11 9 112 e 

[P, o s,] x [(pN n H&W o SM] , SO, le t  us set w = w + curl Y,  we note that 

div w = div b + div (curl Y) = A 9  , 

and (3.8) i s  an easy consequence of (3.10) and (3.2 1 ) .  

P r o o f  o f  lemma 3.1 : case K > 1 , Let us define the funct ions qk i n  @nk) as fol lows 

For the moment, we can notice that the function W defined i n  (3.1 1 ) i s  not i n  X, , but  only in 

v (x ,y> E n k  qk(x,y> = q(x,y> - c(k , N k  = I nk q ( , y ) dxdy / meas(0,) I 

Since we do not want any in format ion for  the values of q o r  div w o n  the v i r t u a l  boundaries ak x 0, 

we s imp ly  construct K functions wk on each nk , k = 1 ,..., K , as i n  the previous case such that 

v k = 1 , . a n  ,K , v i = 1 ,,.., N- 1 

11 wk Ill,flk 6 

, div Wk(<i,k , I ) qk(ti,k , I ) , 

11 qk I IO,Qk ' 

Let us define the funct ion over as fo l lows 
- 

v x q  , W ( X k W k ( X )  . 

- 
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v (x ,y>  f f i k  , ’ w(x,y> = ~ ( x , y >  + o(k(x - a,> + xtZ1 CX, rneas(A,) 

z(x,y> = z x , y >  I 

R e m a r k  3.1 : We have used the hypothesis ( 3 . 1 )  i n  (3.34) and i n  the proof of the existence o f  

functions sat isfy ing ( 3 . 1 6 ) ( 3 . 1 7 ) .  I n  the general case, when (3.1 ) need not hold, i f  we work  w i t h  

more  sophisticated combinations of the L, we can v e r i f y  that (3.17) and ( 3 . 2 0 )  s t i l l  holds w i t h  

CM/N2 i n  place of C i n  (3.20) and fol lowing the same l ines as i n  the proof of the appendix, we can 

prove (3.10) w i t h  C(M/N)( 1 +CM/N2) i n  place of  C , Fur thermore ,  i t  fo l lows f r o m  [ 4 ]  that 

(3.8) fo l lows in  the general case, w i t h  CM i n  place of C . 

3.2 E r r o r  estimate, 

Let us  f i rs t  p u t  the discrete problem i n  an abstract  formulat ion,  i n  order  to apply  the 

standard r e s u l t s  of Brezz i  [ 6 ]  concerning the approx imat ion of  saddle-point p rob lems l i k e  

problem (2.10)(2.1 1 )  ( see [ 101 o r  [5 ;  sect. 1 ] for more details and [ 1 ; sect. 1 ] for  a well-suited 

generalization fo r  the numerical  analysis of the Chebyshev spectral method > .  
Let us f i r s t  define the b i l inear  fo rms 

i 

( 3 . 2 2 )  v (u,w> E [c1(fi)2]2 , ah(U,w) = v(Vu,vW)h,GL I 

( 3 . 2 3 )  v (q,w) f t ( a ) X  C’(a)* , bh(q,w) =-(q,divw)h,G . 
W i t h  these notat ions, problem (2.21)(2.22) can be r e w r i t t e n  as fo l lows : Find (u,,ph)in 

XhxMhsuch that 
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The analysis of t h i s  problem w i l l  requi re  four  proper t ies o f  ah and bh , that w i l l  be ve r i f i ed  

i n  the fol lowing lemmas. 

u m a  3.7 : There exist two constants o( and y independent of h such that 

(3.26) 

(3.27) V u E X, , ah(u,u> 2 cx 11 uII1 . 
V (u,w) E X; , ah(u,w) < Y 11 U Ill 11 WI l l  I 

2 

P r o o f  : The case K = 1 i s  standard ( see f o r  instance [4 ;  Prop,  111.4] ) and i s  based on the 

Let us now analyze the proper t ies of the discrete b i l inear  f o r m  bh 

!&mmdJ : There exist two constants g, 8 ,  independent o f  h such that 

(3.31 ) v (q,w) E Mh X x h  , bh(q,w) < 8 11 q 11 11 w 111 , 
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The previous lemmas prove that the approximat ion of the Stokes prob lem by  the scheme 

(2.2 1 )(2.22) i s  well-posed. More precisely we obtain 

Theorem 3 . 1  : For any f in (c:(o))~ , there exists a unique solution (uh , Ph) to problem 

(2 .2  1 ) (2 .22) .  Moreover, i f  we assume that hypothesis (3.1 ) holds and that f belongs to 

H ; ( C I ) ~  , u > 1 , the fol lowing e r r o r  estimate for  the velocity and the pressure holds for any 

p >  1/2 

(3.39) I IU-UhI I ,  + I l p - p h l l < C ( M - ' + ( I + M  - P N V ) ) " / ~ - ~  1 I I  f l l ,  ' 



- 17- 

P r o o f  : The existence and uniqueness of uh and ph fol lows d i rec t l y  f r o m  Lemma 3.3 and 3.4 and 

[ 10, Theorem 1 , l  1. Moreover another consequence of that theorem i s  the fo l lowing 

and the r e s u l t  i s  an easy consequence of Theorem 2.1 , Theorem B,5, Coro l lary  B.  1 and Theorem 

8.8 of the Appendix. 
, 

Remark  3,2 : Note that Theorem 3.1 s t i l l  holds when f only  satisf ies 

, flnkE H''(nk) , 
~ 

see appendix B. 
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4, NUMFRICAI RFSUL TS. 

4.1 I m p l e m e n t a t i o n .  

I n  t h i s  section we describe the details of the discrete equations ( 2 . 2 3 )  and (2 .24 ) .  We s ta r t  

by defining the bases fo r  the space [IP,,, n H;(A)I2 x [PN-,,, in  which we search fo r  our  solution 

(uN,~,) . As described i n  Section 2.2 A i s  divided in to  K spectral elements A , , , , , l A K .  In each 

element A, the velocity uN of [[PN,, n H;(A)]* i s  expanded in  t e r m s  of Nth order Lagrangian 

in terpolants  Qi (see (2.27)) through the Legendre Gauss-Lobatto points C i I  We then define a 

mapping @ f rom x E A, onto r E I = 1- 1 , 1 [  as r = - 1 + 2 (x  - ak)/(ak+, - a,). Then we state 
k (4.1) v x f A, 1 uN(r,,) = u ~ ( x , . )  

and 

(4.2) 

Here ui = u ~ ( E ~ , ~  ,.) i s  the ve loc i ty  at  the (local) po int  Ei,k i n  the i n te rva l  A, ; that i s ,  

(4.1 l(4.2) i s  a nodal basis. S i m i l a r l y  to  the veloci ty the data f i s  also expanded i n  t e r m s  of NLh 

k N k  uN(rl.) xi =o ui QiW 
k 

order Lagrangian interpolants through the Legendre Gauss-Lobatto points ti , 
(4.3) f$r) = CNzO fkQi(r) I 

The pressure pN E [PN_,,K i s  expanded i n  te rms of (N-2I th order Lagrangian interpolants G~ 
through the Legendre Gauss points Li 

(4.4) 

where pk = PN(t,i,k) i s  pressure at the (local) point  t i , k  i n  the i n te rva l  A, . Note that the Gauss 

N - 1  k -  
p $ r )  Li = 1  pi Q~ 

points  a r e  na tura l l y  sui ted f o r  the pressure,  wh ich  need not be continuous across elemental 

boundaries. 

The expansions (4.1 )-(4.3) a r e  now inserted i n to  ( 2 . 2 3 )  and ( 2 . 2 4 1 ,  and the discrete 

equations a r e  generated by choosing test funct ions w E [IP,,, n H;(A)]* i n  ( 2 . 2 3 )  which are 

un i t y  at a s ingle t i ,k and zero at  a l l  other Legendre Gauss-Lobatto po ints ,  and test funct ions 

q E 'N-2,K i n  (2 .24)  wh ich  are un i t y  at a single ti,k and zero at a l l  other Legendre Gauss points. 

To evaluate the integrals i n  (2.23) and (2.24) we use numerical  quadrature through the Legendre 

Gauss-Lobatto points t i ,k and the Gauss points denoted ( . , . )N,CL and ( I , . )N,G 
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respectively. The f i r s t  te rm i n  (2.23) can then be wr i t t en  as 

( 4 . 5 )  (UN,,~,)N,GL = C;:, (Lk 12) Z ~ = O  X ~ O  8, Dmi Dmj uj k r 

where the der ivat ive m a t r i x  D i s  defined as 

( 4 . 6 )  D,, = (dQ, / d r )  ( tJ I 
We reca l l  that ern a re  the quadrature weights associated w i t h  the Legendre Gauss-Lobatto points 

ti , also Lk = (ak+, - a,> and E'  denotes direct  stiffness summation. 

The second te rm i n  (2.23) becomes 

(4.7) (UNiW)N,GL = E ;  (Lk /2 )  ei Uk I 

w h i l e  the r ight-hand side of (2.23) can be w r i t t e n  as 

(4 .8 )  ( f ,  w)N,GL = Z;r1 (Lk 1 2 )  8i fk * 

The left-hand side of ( 2 . 2 4 )  becomes 

(4.9) (q,uN, + invN)N,G = ai (zj 6ij u; t i n  Lk/2 rij v;) 

where the der ivat ive m a t r i x  b and interpolat ion operator r a r e  defined as 

(4.10) 

(4.1 1 )  

Note that  i n  (4.6) no d i rec t  st i f fness summation need be per formed since the Legendre Gauss 

points <i,k a r e  a l l  d ist inct .  

bpq = dQ,/dr (t,) , 
rpq = a,(<,) I 

I n  m a t r i x  fo rm the set of discrete equations ( 2 . 2 3 )  and (2.24) can be w r i t t e n  as 

( 4 . 1 2 )  

(4.13) Dappu = 0 

Aappu-  Ga,,p B f 

where  Aapp i s  given by (4 .5) - (4 .7)  , Bapp by (4.8) , Dapp b y  (4.9) , and Gap, i s  the 

adjo in t -matr ix  of Dapp, The Uzawa method used to solve (4.12)-(4.13) w i l l  be described i n  more 

details i n  a f u t u r e  paper[ 191. Basically, i t  consists i n  solv ing the fo l lowing zeroth-order equation 

fo r  the pressure 
1 

Dapp ( ~ a p p ) -  Gappp = ~ a p p  (Aapp)-'B f I 

by using a conjugate gradient a lgor i thm,  and then recovering the veloci ty f r o m  (4 .12 ) .  
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(4.14) 

u = - ( 1  + c o s n x ) / n  , 

v = i s i n n x  , 

p = s i n n x  , 

f =  - ( 1  + c o s n x ) / n  1 

g = i (2+n2)  sin r[ x , 

(4.15) 

u = -( 1 + cos n x ) / n  

v = i s i n n x  , 

p = s i n n x  I x - 1 / 2 1  1 

f = [ -  ( 1  + cos n x ) / n  + y + 2 / 3 )  sgn(x- 112) I x -  1 /2  I 
g = i [(2+n2) s in  n x + I x -  1 /2  l Y t 2 l 3  3 . 

, 

y+2/3  

~ + 2 / 3  1 , 

Note that  the solut ion and the data i n  the f i r s t  test problem a r e  i n f i n i t e l y  smooth, w h i l e  the 

r e g u l a r i t y  of second test problem i s  determined by  the value of y , wh ich  i s  assumed to be an 

i n teger . 

I n  the first test problem A i s  divided in to  2 equal subinterva ls  A ,  and A, , i.e. k = 2 ,  

w h i l e  i n  the second test problem only one element i s  used, i.e. K = 1 ,  The numer ica l  solut ions are 

compared w i t h  the analyt ical  solut ions f o r  d i f ferent  values of N , the order  of the polynomial  I 

i expansions (4.1 ) ( 4 . 3 ) .  To measure the e r r o r  i n  the numer ica l  solut ions, the fo l lowing e r r o r  

measures are  used : 
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expensions i s  increased. Figure 1 shows the e r r o r  i n  the veloci ty and the pressure as a function of 

the total number of degrees of freedom (Legendre Gauss Lobatto points)  i n  the x-direct ion.  The 

rap id  convergence ra te  i s  expected due to  the fact that the solut ion i s  analytic. 

I n  the second test problem we obtain algebraic convergence as the order N of the polynomial 

expansions i s  increased. F igure  2 shows the e r r o r  i n  the pressure  as a funct ion of the total 

number of degrees of freedom (Legendre Gauss Lobatto points) i n  the x-direct ion f o r  y 3 and 

y = 5 The convergence ra te  i s  given approximately as N- (’+’) , Although the e r r o r  estimates 

(3 .40)  i s  somewhat pess imis t ic  as regards the e r r o r  due t o  the fo rc ing  t e r m  ( f  E H’=> 

IIp-pNII < N1-’) , as regards the approximation e r r o r s  ( p  E Hy+’+ IIp-q,II < N-’-’) the bound i s  

quite t ight .  
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L 

APPENDIX, 

Append  i x  A - p p r o x  i m a t i o n  o f  a D i s c r e t e  L a p  l a c e  Ea u a t i o n .  

The p roo f  o f  the compa t ib i l i t y  condit ion between the spaces of ve loc i ty  and pressure  

involves some resul ts concerning the approximation of the solut ion of the Laplace equation by a 

collocation method based on the Gauss points. 

LEUDIAL: For any q in Mh there exists a unique 9 in [P, n H i ( A ) ]  o S,SUC~ that 

(A.1) V i = 1 ,,.,, N-1 , ACP(Ci, . >  = q(<,, .>  , 

P roo f  : Let us  consider the collocation problem : f i n d  CP in [P, r'l H:(A)] o S, such that 

(A.2) N-1 , V j = 0 ,  ..., 2M , ACP(Ci, Oj ) q(Z, , Oj >.  
It i s  an easy matter to check that CP sat isf ies ( A .  1 ) .  M u l t i p l y i n g  bo th  sides of ( A . 2 )  b y  

(2n/ (2M+ 1 > >  Y( t ,  , Oj >ai and summing up w i t h  respect to i and j leads to the equation 

Taking Y equal t o the  Lagrange interpolant of the point (S i  , Oj ) in  [P, r'l H i ( A ) ]  o S ,  , proves 

that the problem (A.2) i s  equivalent to  : Find CP in [P, n H i ( A ) ]  o S, such that 

V i = 1 

(A.3) v E [PN SM 1 (Aq,*)h,G = (qlY)h,G I 

(A841 v E [[PN r'l H i ( A ) ]  SM 1 ( A ~ I * ) ~ , G  (q,y)h,G 

Let us set 

(A.5) v X) E {[PN n H:(A>] 0 S,}2 , C(Yl X)  - ( A Y ,  x)h,G 

I n  order to  p rove  that c i s  continuous and e l l i p t i c ,  we reca l l  that (see [2; Lemma II I ,  13) 

(A.6) V '# E PN-2 , ( 1  -X2) IC,(X12 dX < (( 1 -X2) '#,IC,>N,G < 2 ( 1 -X2>  IC,(X)2 dx 

and that (see [2; Lemma 111.2]) 

For  any Y and X i n  [P, n H;(A>] o S, we der ive f rom (2.1516 and (2,18) that 

(A.7) V 9 E PN-2 , C N - ' j A  ( 1 -X2)21C,(X)2 dx < (( 1 -X2)2g,'#)N,,j < C j r \  ( 1 -X2)2+(X)2  dx 

(A -8 )  ~ ( 9 ,  X 1 = Jo [-(W,,(.,Y) x ( a  ,y))N,G + (*,,(% ,y>, x ,,(e ,Y))N,G I dy 
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I n  th i s  second lemma, we are going to derive a un i fo rm bound fo r  the H ' ( n ) - n o r m  of 9, . 

J-2 : The solution CP in [ PN fl H:( A ) ]  o S, of problem (A.  1 ) satisf ies the fo l lowing 

est imafe 

(A.  15) II qx 111 Q CII q II * 
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Unfortunately,  the inequal i ty 11 qyy ( 1  6 C I (  q 11 i s  not so easy to derive. This i s  done i s  the 

fo l lowing lemma. 

Lemma A.3 : The solution Q i n  [PN n H l ( A ) ] o  S, o f  problem (A. 1 )  satisfies the fo l lowing 

estimate 

(A.20) IP, 111 6 CII 9 II ' 
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As a conclusion , we state 

Theorem A. 1 : Forany  q in M, thereex is tsaunique 9 i n  [P, fl H i ( A ) ]  o S,such that 

V i = 1 ,..., N-1 , A Q ( t i  , .) = q(Ci , .) . 
Moreover, Q satisfies the following bound 

(A .36)  II 9 112 < c II 9 11- 
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A p p e n d i x  B -  E r  r o r  B o u n d  f o r  the P r o 1  ' e c t  i o n  a n d  1 n t e r p o l a t i o n  

O p e r a t o r s .  

The f i n a l  e r r o r  est imates r e q u i r e  some technica l  r e s u l t s  about t h e  orthogonal  

p ro jec t ion  operator f o r  the H:,,(O)-scalar product onto the space PN,, o S, and in terpolat ion 

operators w i t h  values i n  the same space. 

n s i o n a l  case, 

I n  t h i s  paragraph, we extend the resu l ts  of [ 7 ]  and [ 161 t o  state some proper t ies of the 

approximat ion operators over P,,,. See also [ 9 ]  f o r  some pa r t i a l  resu l ts  i n  t h i s  direct ion.  

The possibi l i ty  o f  using d i f ferent  values of the parameter N i n  each subdomain nk was only 

evoqued i n  the previous p a r t  o f  the numerical  analysis. The only d i f f i cu l t y  that t h i s  should i m p l y ,  

would be to complicate the reading of the proofs,  and absolutely not o f  mathematical nature.  

Howether, here we shall consider such an eventual i ty since the extension f rom the case where N i s  

assumed to be constant, to the one where N i s  var iab le,  i s  not s t ra ight forward.  The in te res t  of 

doing so i s  to be able t o  f i t the regu la r i t y  of the solut ion and, i n  par t i cu la r ,  t o  increase the number 

of degree i n  the region where the solut ion i s  a b i t  less regular .  This i s  a f i rs t  step toward the 

general s i tuat ion;  the second one w i l l  take i n to  account the size of A, and the poss ib i l i ty  of taking 

the parameter K as a discret izat ion parameter. 

Let us define f o r  each k ,  1 G k G K ,  an integer N(k) ,  that w i l l  take now the place of the 

prev ious notion of N, the degree of the polynomial i n  the nonperiodic direct ion;  the corresponding 

space of polynomials over A w i l l  be noted DN,,(A) and w i l l  consist i n  

PN,K(A) = { f L 2 ( A ) ,  q l ~ ~  E pN(k)(Ak) } 

(note that  f r o m  now on , we shal l  precise the i n t e r v a l  where the var iab le  a r e  defined for  the 

var ious spaces of  polynomials), 

The regu la r i t y  of the solut ion being possibly di f ferent on each A, , we introduce some spaces w i t h  

broken norms. More precisely,  f o r  any K-tuple of pos i t ive rea l  numbers r (r, , r2,.ns,rK), we 



- 29- 

F i r s t  of a l l ,  l e t  us consider the L2(A)-project ion operator hN onto PNIK(A) . We have 

Theorem B.  1: Let r be a K-tuple of nonnegative real numbers. We have for any function Y in 

R'( A )  

P r o o f  : F i r s t ,  we note that f rom the def in i t ion of h, , we have 

(8 .2 )  

so that fo r  any k i n  IN, 1 < k G K ,  we have 

V Y E L2(A)  , V E DN,K(A) , (Y-nNY,q)A = 0 , 

v E L2( r \>  , v 4, E [PN(,)(Ak) , j~~ ( dx = 0 I 

hence we note that  ( R N Y ) l A k  i s  the project ion o f  YIAk onto lPN(k)(Ak) w i t h  respect to  the 

L2(Ak) -sca la r  product, As a consequence of classical resu l ts  (see [7 ;  Theorem 2-31], we der ive 

that f o r  any rk 2 0 ,  we have 
r -r. 

v '-4! f H '(Ak) , 11 Y - ~ N Y  I ~ o , A ~ G  c N(k) 11 Ilrk,/\k * 

Summing up  the square of these inequalit ies, wededuce that 

and (B .  1 ) i s  proved. 

Next, we state the fo l lowing inverse inequality 
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L 

Lemma B , 1  : Let r a n d  s be two K-tuples o f  rea l  numbers, such that for  any k, 1 < k < K ,  

o < rk s k'  We have for any any function Y in P N , K ( ~ )  
4(sk-rkI 2 (8.3) II Y IIs,A < C [L;=i N(k) II Y IIr k,Ak I 1'2 

P roo f  : Here again t h i s  resu l t  i s  a s imp le  consequence o f  the fo l lowing classical inverse inequali ty 

over [P~( ]a ,b [ )  for any a and b i n  [R : 

(B .4)  v w f p ~ ( I a , b [ )  b?eld E R f ,  8 < 0 > 11 w Ilo,la,b[ < c N*('-') 11 w Ilp,]a,b[ 

Indeed, we have 
K 2 

kf v f ~ N , K ( ~ )  1 11 llf,A = Lk=1 11 l l sk ,Ak  I 

f rom ( 8 . 4 )  applied on each subinterval  A, , we deduce that 

and (8.3) i s  proved. 

Now, we are interested i n  some project ion operator f rom H J ( A )  onto PN,K(A) 

J-: There exists an operator R i  f r om HJ(A) onto P N , K ( ~ )  n H&V ve r i f y ing  

for  any function Y in "H9(A) n H J ( A )  , wi th  s being one K-tuples o f r e a l  numbers 2 1 

H;(A). 

2(r -S ) 
k k  11 l l?pAk 11'2 ' (8.5) 'd r =  ( r$1 < k S K  10 < r k  < 1 1  11 - fiiy IIr,A < C [E:=, N(k) 

P r o o f  : Let u s  recal l  that, f o r  any a and b i n  IR, the re  ex is ts  a p ro jec t i on  operatorn, f r o m  

H'(]a,b[) onto [P~( ]a ,b [ )  satisfying (see [3; Corol lary 1v.21) fo r  any o < r < 1 6 s 

( " 6 )  ' W E Hs(Ia>b[)  I II W - n N W  llr,]a,b[ < C Nr-' 11 W Ils,]a,b[ 

and 

(B .7 )  nNw(k 1 )  W(k1). 

Let us define the project ion operators T[N(k),k I for any k i n  IN, 1 < k < K ,  as being the project ion 

operators f rom H1(Ak )  onto [PN(k)(r\k). We deduce f rom (8.7) that the element R i  Y defined on 

each A, b y  
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Let us analyze now some propert ies of the operator of interpolat ion i N , K  i n  DNIK(A) over the 

Gauss-Lobatto points. Since the degree N(k) of the polynomials of approximat ion can v a r y  w i t h  k, 
we must redefine the points of interpolat ion. I t  consists over each A, of the ( E .  i,k i=O,N(k) defined i n  a 

s i m i l a r  way as i n  (2 .16) ,  Using the same techniques of decomposition of the i n t e r v a l  i n  

u,,, A,, we deduce from the classical resul ts on the operator of interpolat ion i n  [PN(A) over the 

Gauss-Lobatto points (ti) , i = O ,  ... ,N ( see [ 7 ;  Thm. 3.21) that 

Theorem 8.3 : Let r be a K- tup le  of rea l  numbers, such that rk > 1 /2  ,We have for any 

function Y in "(A)  

K -  

R,7 The t w o  - d imens iona l  case, 

I n  t h i s  paragraph, we shal l  combine the resu l t s  of section B.  1 w i t h  ?he classical resu!?s 

concerning the approximation theory related to the Four ie r  case. These resu l ts  and the techniques 

we use a re  v e r y  close to those of [4 ;  Appendix] and [ 171. 

As i n  the previous section, we shal l  consider that the regu la r i t y  of the funct ion we want to 

approximate i s  d i f fe ren t  on the var ious  Qk , To t h i s  hand, we associate w i t h  each nk a couple 

(N(k), M(k))  of integers and consider the space o f  approximation 

dt, = { Cp E L2(n)  , v k ,  1 < k < K , Ylfik E p N ( k ) ( A k )  @ s,(k) 1 - 
Then, fo r  any K-tuples r a n d s  of posit ive real  numbers, we consider the spaces 

r 
Rrr . s ( f I )  = { ~p f L2(Q),  V k, 0 < k < K ,  Cp lok E H k(r\k;L2(@)) n L2(r\k;H:(o)) } I 

As i n  section 2 , we define also the spaces RrS:(fI) as being the closure of C,"(n) in  fir"(n). We 
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shal l  use i n  the proofs some norms over Qk the space Hr (Ak ;L2(0) )  i s  provided w i t h  the norm 

1 1  . ~ l ~ , ~ , ~ ~  ; the space L 2 ( A k ; H i ( 0 ) )  i s  provided w i t h  the norm 1 1  I lo,s,nk. 
F i r s t  of a l l ,  let us consider the L2(n) -p ro jec t ion  operator n,, onto Ah i n  ~ ~ ( 0 ) .  We have 

Theorem 8.4 : Let r and s be two K-tuples of real  numbers. For any function Y in  nriz(fl) 

I l l 2  . ( ~ . 9 )  II 9 - n~ IIO,A 6 c [L,",, ( ~ ( k )  II Y IIrk,O,nk + M(k) 11 \\O,sk,Ak 
k 

- 2 s  
k 

-2r 

Proof  : Let us denote by  IT; the L2(0) -p ro jec t ion  operator onto S,(O). We reca l l  the fo l lowing 

inequali ty, va l i d  for any c( 2 0 ( see [24] )  

( B .  10) V v € H:(O) IIv-IT; V II0,e < C IIVIIs,e . 
Then, as i n  the proof of theorem B . 1 ,  we der ive  f r o m  the de f i n i t i on  of the  L 2 ( f l ) - p r o j e c t i o n  

opera tor  t h a t  R ,  coincides over  nk t o  the standard p r o j e c t i o n  pk f r o m  ~ ~ ( 0 , )  onto 

we deduce that 

and (B .9)  i s  proved. 

I n  the case where N and M are  constant, we have s i m p l y  fo r  the operator f l h  of pro ject ion 

over P,(A) o S, . 
C o r o l l a r u  B .  1 : Let r a nonnegative rea l  number. We have for any function Y in  H:(fl) 

(B .  1 1 )  I l Y - n h y  IIo,n 6 C + 11" Ilr.0 8 

P r o o f  : I t  suffices to notice that H:(Q) coincides w i t h  "(A; L2 (0 ) )  n L 2 ( A ;  HL(0) )  (see [ 14; 

Chap. 4, Proposit ion 2-31). 

Next, we state the fo l lowing inverse inequali ty, We f i r s t  define, f o r  any K-tuples r a n d s  of 
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posi t ive rea l  numbers, the space 

%'"((n) = { 9 E L 2 ( n ) ,  (piQk E Hrk(Ak; H:(O)) 

I emma 8.7 : Let rand s, r' and s' be K-tuples of  rea l  numbers, such that for  any k ,  

Proo f  : The fo l lowing inverse  inequali ty, val id for  s < s' , i s  classical 

( B .  13) 

We der ive immediat ly (B. 12) f rom (6.3) and (B.  13). 

V v E S,(O) , I I v ~ ~ , ~ , ~  < C MS'-' I \ v ~ ( ~ , ~  

C o r o l l a r u  B.7 : Let rand r ' b e  two nonnegative rea l  numbers, r 6 r ', We have for any Y in 

P,,&A) o S M ( 0 )  

(B .  14) Il~ll,..,~ < C ( N - 
K 

) [ Ck:l IIVIl,,Qk 2(r'-r) + Mr'-r 

P r o o f  : Once more, we deduce (B. 14) f rom lemma B.2 and f rom the fact that H>(O) coincides 

w i t h  Hr(A ; L 2 ( 0 ) )  (7 L2(A; H>(O)). 

Now, fo r  a given rea l  number,  we are interested i n  a-project ion operator f r o m  tid,,(n) 

Theorem B . 5 :  There exists an operator ni f r o m  H;,,(fl) onto A,,,, ve r i f y ing  for  any 

onto &h,O = A,,, n H&I;L~(o)) I 

function Y in I",;(n)n H:(A ; L 2 ( 0 )  where r i s  a K-tuple of rea l  numbers < 1 

(B. 15) 
2(1-r ) 

k 1 II 9 Y2- 
2(1-r ) 

119 - n ( Y  [I,,* < C[ zFZl [ N(k) + M(k) 

P r o o f  : The great d i f f i cu l t y  i n  t h i s  Theorem r e l a y  on the fact that  the degree i n  the Four ie r  

d i rect ion are di f ferent i n  each nk bu t  the resul t ing approximat ion has to be global ly i n  H ' ( Q )  

which  i m p l i e s  that a t  the boundary akxOl the t race of the approximat ion must be i n  Sy(k) w i t h  

p ( k )  inf (M(k- 1) , M(k) ) .  
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Our proof w i l l  be decomposed in to  3 steps, and we f i r s t  assume that rk 2 2. 

1 )  It i s  a standard r e s u l t  o f  the t race  theory  (see e.g.[ 121) to  note that  i f  Y belongs t o  

H *,(fl)n H i ( A ; L 2 ( 0 ) )  the  f i rs t  t race  can be defined over each akxO,  m o r e  prec ise ly ,  the 

map p ing  

- r r  

+ { lC'k = ylakxO J l < k < K + l }  
K+ 1 suP(rk- ,rk)- 112 

i s  continuous f r o m  "Hpm H&I;L~(o)) n L~(A;H;(O)) in to  Rk=l H, (0). 

Besides, for  any k ,  2 d k < K ,  there  exists a continuous inve rse  mapping (see e.g. [ 121) that 

a s s o c i a t e  t o  each q k  o f  H , ( O ) ,  a n  e l e m e n t  R k ( q k )  o f  

H# ( A k x O ) ,  whose f i rst  trace over akxO coincides w i t h  qJk and 

whose f i r s t  t race over ak-lXO and ak+lxO i s  zero. In par t i cu la r  the cont inui ty of each R, that  we 

can formulate as follows 

s u p ( r k -  , r k ) -  1 1 2  

sup(rk- rk) sup(rk- ,rk) 
(Ak- iXo) X H, 

( B .  16) v +k f H>(O), 11 R k q k  I Ipk+1/2 < 11 q k  / lek , 

imp l i es  that  the  mapping R that associate to  each Y of wym-I H i ( A ; L 2 ( 0 ) )  the element of 

L2(Q) defined as follows 

V k ,  2 6 k < K - 1 ,  RY = [ R k y l a k x O  1 10, + [Rk+ly lak+,xO I 1  1nk Ink 

1 - 
RylOl  = [R2y la2x0 1 10, ' 10, 1 

sat isf ies R Y  belongs to ~ S ~ ~ ( 0 ) n  H i ( A ; L 2 ( 0 ) )  w i t h  s defined by  

(B. 17) V k ,  1 f k < K ,  Sk = inf( SUp(rk-, ,rk), SUP(rk,rk+l)) , 

where we have set ro = rK+l = 0. Moreover, we also have 

( B . 1 8 )  V k ,  1 f k < K ,  (y - R'4!) f H i ( n k )  I 

Ink 

2) It i s  an easy matter to f ind  an element of &,,o that approximate $ = Y - RY. Indeed i t  suffices 

to  take over each A,, (ni(k) o nick,)$ since t h i s  element vanishes over  each elemental 

boundary. Moreover,  i t  ve r i f i es  

( B ' 1 9 )  \IQ- ( n i ( k ) @ n l ( k ) ) Q  IIl,nk < c ( I\$- (nA(k)@ni(k))* l lL2(A ."(e))  
k '  x 

+ (n : ( , )on ,X(k) )$ l lH1~Ak;~2(0) )  ) ' 
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1 -r 1 -r 

I n  the same way, we w r i t e  the second term 

Using (B,5) w i t h  r = 1 ,(B.20) w i t h  r s = 0 and (B.20)  w i t h  r 1 gives 

so that,  by ( B . 2  11, 

F ina l l y ,  the inequali t ies (B. 19) (B .22) (8 .23)  i m p l y  

(cf ,  [ 14; Chap. I ThEioreme 5 , 1 ] ) .  
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3) The same technique can be applied to the res t r i c t ion  of each RKYlaKXO to  n k - 1  and to Q k  I But 

here  we know that the element RKYlaKxO has the best r e g u l a r i t y  of Y over n k - 1  o r  nk I We 

approx imate  RKYlaKx by  an element of [Pn(k)(/\k,l) x Sm(k) over  nk,l and b y  an element 

O f  p n ( k ) ( A  k )  ' rn(k)  over  flk w h e r e  we have set  n (k )  = i n f  ( N ( k - l ) , N ( k ) )  and 

m ( k )  = i n f  ( M ( k - l ) , M ( k ) ) ,  S u m m i n g  u p  t h e  r e s u l t i n g  a p p r o x i m a t i o n s  we d e r i v e  an 

approximat ion nh(Y)  of RY i n  that satisfies 
1-sup( r r ) l-sup( r r ) k-1 '  k 

+m(k)  k-1' k ( 8 . 2 5 )  11 RY - n h ( y ) l l l , f l k  < c (n(k) 

The pro ject ion operator nh i s  stable i n  the "(0) norm then we have 

II 9 - nty Ill$ < II Ill,* ' 

The general r e s u l t  fol lows b y  using the main theorem of in terpolat ion between H i l b e r t  spaces of 

[ 141. 

We w i s h  to  obta in  an e r r o r  est imate f o r  the  i n t e r p o l a t i o n  operator .  Let  us denote 

b y  X -  , i k  = ( i k , j k )  0 < ik < N(k)  , 0 < j k  < 2 M ( k ) ,  t h e  po in ts  ( t i , k ,  e j , k )  w h e r e  
ik - e .  = -n + 2 j k n / ( 2 ~ ( k ) +  1 )  Let us defined the operator I h  f rom c0(fi)  i n to  d h  b y  1.k 

( 8 . 2 6 )  v V f c o ( a ) ,  \d k ,  1 < k < K ,  v i k  = (ikjJk) , I h V ( x r k )  = V(X.- )  I 

'k 
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Theorem B.6 : Let rand s, r '  and s' be K-tuples o f  rea l  numbers greater than 1 / 2 .  We have 

for any function v in H'%N n Zr,'((n> 

Proof  : Let us denote b y  I( the operator f rom Co(B)  i n to  S,(O) defined by 

(8 .28)  v v E c 0 ( B ) ,  v j , o < j G 2 M ,  I; v(ej)  V(e,) . 
Since over each (nk , I h  i s  equal to I N ( k )  o I ( (~) ,  we have 

( Iv-  IhVIlo,nk < ( IIv- ( Id  l((k))v llL2(Ak; L2(@)) + \Iv- ('N(k) @ Id)v l lL2(r \k;  L 2 ( o ) )  

+ ( 1  ( I d  - ( Id  0 I ( (k)))(v-  ( I N ( k )  @ I ~ ) V ) I I L ~ ( A ~ ;  ~2 (o )>  

Then, we deduce the theorem f rom (8.8) and the classical resu l t  (see [7 ;  Theorems 1 . 2 ] ) ,  va l id  

f o r s >  1 / 2 ,  

(8 .29)  V v E H:(O), IIv- ( I d  o I ~ > V I ~ ~ , ~  G C M-' I IVI~, ,~ . 

I n  the more s imple case where N(k) and M(k) are independent of k ,  we have 

C o r o l l a r u  8,3 : Let r be a rea l  number > 1.We have for any function v in  Hi(f-2) and for 
- ._ . . 
A , , , ,  i t . .  I!? 

(8 .30)  

" " L j  y . I ,  L 

I I V -  I h v  J(o,n < C ( M - r  + ( I  +M-VNV))N"2-r) I IV  Jlr,n a 

P r o o f  : Using Theorem 8.5 w i t h  rk = sk = r;+s;, independent of k together w i t h  ( 8 . 2  1 ) ,  yields 

) IIv 1lr.n ' 

1 /2-r  -r' Nl /2-r+r' 
J I V -  IhVI lo,n < C (M-r + N + M  

This inequal i ty i s  va l id  for  any r' = IJ > 112. 

The end of t h i s  section being more related to our  analysis than the previous general resul ts ,  

we shal l  suppose that  N(k) and M(k)  a re  independent of k ;  besides, i t  i s  c lear ,  though tedious t o  

w r i t e  and read , how the general resu l t  would exist. 
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We want to estimate the difference. 

( 8 . 3  1 )  E(f,W) = ( f ,w) - (f]w)h,GL 

for any f i n  CO(fi) and w i n  PN,K(A) o S, I Let us denote by h* the couple (N- 1 ,M) we can prove 

Lemma B.3:  For any f in  C o ( f i )  and any w in PN,K(A) o SM we have 

(B.32) 1 E(flw) 1 < c [ 11 - Rt,* \\O,n- 11 - I h  Ilo,nl 11 llo,Q . 

Using (B.9) and (8.27) yields immediat ly 

F ina l ly  (B.9) and (B.30) gives 

C o r o l l a r u  B,4 : Let r be a rea l  number > 1 ,  For any w i n  PN,K(A) o S, and any f in  

HL(f2) and for any p > 1 /2 

(8.34) 1/2 r 1 E(f,w) 1 < C (I w ll<M-' + ( 1  +M-'N')N - ) Ilfllr,n . 
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corresponding to  the test problem (4.14). The e r r o r  i s  given f o r  y = 3 and f o r  y = 5. The total 

i n t e r v a l  A = 3 - 1  ] 1  [ i s  not divided in to  any subinterva ls ]  i .e .  K = 1 .  Algebraic convergence i s  

I achieved asymptot ical ly ( the plot  i s  log-log ) ,  although i n i t i a l l y  f o r  smal l  N faster convergence is 

ach 1 eved. 
I 

I 

I 

, 

F i g u r e  capt ion  

F i g u r e  1 .  The e r r o r  i n  the veloci ty uN = (u,,v,) and the pressure pN as a funct ion of the total 

number of degrees of freedom ( Gauss Legendre Lobatto points ) i n  the x-d i rect ion when solv ing 

the discrete equation (4.12) corresponding to  the test  problem (4.13).  The to ta l  i n t e r v a l  

A = 1- 1 I 1 [ i s  divided in to  two equal spectral elements of lengh A ,  = 1- 1 , O [  and A ,  = 10 ] 1  [ ,  i .e. 

K = 2. Exponential convergence i s  obtained ( the plot i n  log- l in) .  
I 
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